Fish and Macroinvertebrate Trapping Data Report in Relation to Flowering Rush Infestations Peter Rice & Virgil Dupuis¹ 5/30/2014

Non Technical Summary

Salish Kootenai College and the University of Montana are leading investigations of the aquatic invasive macrophyte flowering rush (Butomus umbellatus) in the Flathead Basin. The goal of this research is to gather basic information to assess how flowering rush expansion will impact native fish recovery in the Flathead Basin. Flathead Lake has experienced non-native fish and macroinvertebrate introductions that alter food webs resulting in a fishery dominated by 80% non-natives, and culturally and ecologically important native westslope cutthroat and bull trout natives have declined to 15% of the fish assemblage (Ellis 2011). The Flathead region is the Columbia headwaters and is the source for downstream invasion of the entire system. This study is the first to document environmental conditions created by flowering rush and will provide information as to the future conditions of an unmitigated spread. We will evaluate presence and use of flowering rush by non-native fish compared to open water and native vegetation. We will produce an inventory of the macroinvertebrate population classified by functional guilds for baseline aquatic health and productivity. Based on fish, macroinvertebrate, and structure studies we will provide a fisheries perspective to the long-term impacts of unabated flowering rush establishment in Flathead Lake and rivers on non-native fish populations with implication to native species. We will produce an inventory of the flowering rush invasion over several hundred miles of river and adjacent wetlands. Expected outcomes will support a need for active management of flowering rush to reduce spawning and foraging habitat for non-native fish and protect native fish and native habitat. Management will reduce the spread, reduce recreation impacts, protect native fishery and protect water quality, reduce irrigation water delivery costs, and maintain open water conditions. We will document the locations and size of the invasion for implementing active management projects. This study will support the need for a complete scientific assessment along the Columbia River, implementation of local management efforts, and the involvement by additional tribal, federal, state, and private interests. Given the results from the spatial modeling research and field, and the results from this research, we expect to find evidence that an unabated flowering rush invasion will significantly result in habitat favoring additional non-native fish. This may result in the lessened ability of natives to compete and maintain viable populations.

Sampling Results

Using pop nets, dip net, and light traps 167 samples were acquired in 2012 and 152 in 2013 (Table 1).

Tuere II Summary of Sumpres usquiteu.						
2012	Method	Sum				
Faust Slough (River)	pop net	3				
East Bay (Lake)	pop net	18				
Faust Slough (River)	light trap	84				
East Bay (Lake)	light trap	48				
Faust Slough (River)	dip net	<u>14</u>				
		167				
2013	Method	Sum				
Fennon Slough (River)	light trap	118				
East Bay (Lake)	light trap	<u>34</u>				
		152				

Table 1. Summary of samples acquired.

¹ USDA NIFRA Tribal Colleges Research Grants Program Grant # 2011-38424-30518

Water boatman (Corixidae) were the predominant macroinvertebrate species capture by light traps in the river sloughs in 2012 followed by scuds (Hyallelidae) (Table 2). Only 13 taxa were captured by this method.

		Sum of
Common Name	Family	Counts
Water Boatman	Corixidae	2,222
Scud	Hyallelidae	487
Minnow Mayfly	Baetidae	58
Predaceous Diving Beetle	Dysticidae	38
Case Maker Caddis Fly	Lepidostomatidae	13
Whirligig Beetles	Gyrinidae	13
Water Mite	Hydrachnida	5
Snail	Physidae	4
Damselfly	Lestidae	3
Burrowing Mayfly	Ephemeridae	2
Mosquito	Culicidae	2
Midges	Chironomidae	1
Water Scavenger Beetles	Hyrophilidae	1

 Table 2. Macroinvertebrate taxon counts for 2012 Faust Slough light trap samples (n=30).

The light traps were quite effective in capturing small juvenile fish, but only 1 fish (a yellow perch, *Perca flavescens*) was captured in the 18 pop nets that were deployed in July 2012, all the other fish were obtained by light traps. We captured four fish species by light traps (Table 3). Northern pikeminnow (*Ptychocheilus oregonensis*) dominated the juvenile fish community in the river sloughs in 2012, followed by smallmouth bass. We did not capture any northern pike (*Esox lucius*) in 2012 as we only began to sample by light trap in August when there are very few or no small juvenile northern pike remaining.

Table 3. Juvenile fish species counts for 2012 Faust Slough light trap samples*.

			Sum of
	Name		Counts
Northern Pikeminnow		Ptychocheilus	
		oregonensis	3,486
	Smallmouth Bass	Micropterus dolomieu	378
	Yellow Perch	Perca flavescens	121
	Brook Stickleback	Culaea inconstans	414

*only 1 yellow perch caught in pop nets

Although light trap sampling was effective for capturing juvenile fish it grossly under sampled the macroinvertebrate diversity; dip nets wee much more effective in sampling full community species richness and abundance weighted diversity indices (Table 4)

Method	Organisms Count	Species Richness	S-W Diversity	Simpson's Diversity	Evenness
Dip Net (n=11)	445	34.9	2.351	0.813	0.663
Light Trap (n=34)	78	6.9	1.386	0.667	0.732

 Table 4. Mean organism counts and diversity parameters for river slough dip net (2012) and light trap (2013) sampling methods.

However the limited number of 2012 same sampling date dip net river slough samples did not indicate any significant difference ($p \le 0.05$) difference in the calculated diversity parameters (Table 5). Dip net capture rates tended ($p \le 010$) highest for samples taken in open water and lowest when sweeping in the dense flowering rush infestations.

Table 5. Habitat means for organism	n counts and diversity parameters	for 2012 Faust Slough dip net
samples.		

Parameter	ameter Habitat		Mean	ANOVA p	
	Flowering Rush 100%	3	35.7		
Pichnoss	Native 100%	3	36.0	0 130	
Kichiics5	Native 25-90%	3	37.0	0.139	
	Open Water	2	29.0		
	Flowering Rush 100%	3	0.672		
Examples	Native 100%	3	0.649	0.091	
Evenness	Native 25-90%	3	0.667	0.981	
	Open Water	2	0.664		
	Flowering Rush 100%	3	2.404		
	Native 100%	3	2.323	0.994	
S-w Diversity	Native 25-90%	3	2.404	0.884	
	Open Water	ater 2 2.23			
	Flowering Rush 100%	3	0.819		
Simpson's	Native 100%	3	0.809	0.004	
Diversity	Native 25-90%	3	0.814	0.994	
	Open Water	2	0.810		
	Flowering Rush 100%	3	362		
	Native 100% 3 427		0.000		
Organism Count	Native 25-90%	3	462	2 0.099	
	Open Water	2	574		

More total macroinvertebrate taxa were captured by light traps in 2013 in the upper river Fennon Slough (Table 6) than we obtained in the 2012 light trap samples, however the overall mean richness is 2012 light trap sample was still only 7, still far below that obtainable by dip nets. The ANOVA's for the 2013 Fennon Slough

light trap samples (fish & macroinvertebrates together) were significant ($p \le 0.05$) for the capture totals and the diversity parameters (Table 7). Pairwise comparisons among vegetative habitat types were made for this data set were the habitat sample sizes were 11 to 13 (Table 8). For these data flowering rush had the highest total organisms counts, highest species richness, and correspondingly the abundance weighed diversity indices ($p \le 0.05$) (Table 8). The open water samples had higher total organisms counts and species richness than the native vegetation ($p \le 0.05$) (Table 9); suggesting higher capture efficiency in open water than in vegetated habitats and/or sampling date difference in species availability.

Order/Class	Taxon	Totals
Fish	Largemouth Bass	168
	Yellow Perch	12
	Northern Pike	9
	Northern Pikeminnow	0
	Pumpkinseed	8
Diptera	Bezzia	81
	Chironomidae (Pupae)	299
	Chironomidae (Larva)	203
	Tanypodidae	394
	Chaoboridae	137
	Tipulidae	2
Odonata	Enallagma	1
	Libellulidea	1
Ephemeroptera	Caenidae	584
	Callibaetis	12
Hemiptera	Corixidae	0
Amphipoda	Hyalella	1198
Coleoptera	Dystiscidae (Hygrotus)	12
	Gerridae (Gyrinus)	4
Trichoptera	Hydroptila	0
Hydracarina	Water Mites	2376
Mollusks	clams	2
	snails	3
		5497

Table 6. Taxa captured by light traps in Fennon Slough in 2013.

Parameter	Habitat	Ν	Mean	ANOVA p
	Flowering Rush	13	99	
Count Sum	Native	10	40	0.040
	Open Water	11	89	
	Flowering Rush	13	8.5	
Richness	Native	10	5.1	< 0.001
	Open Water	11	6.8	
	Flowering Rush	13	0.745	
Evenness	Native	10	0.795	0.037
	Open Water	11	0.659	
CW	Flowering Rush	13	1.589	
5W Divorsity	Native	10	1.263	< 0.001
Diversity	Open Water	11	1.259	
C:	Flowering Rush	13	0.726	
Simpsons	Native	10	0.653	0.010
	Open Water	11	0.611	

Table 7. Habitat means for organism counts and diversity parameters for 2013 Fennon Slough light trap samples (n=11 to 13).

Table 8. Pairwise (LSD) comparisons of means for organism counts and diversity parameters for 2013 Fennon Slough light trap samples were n=11 to 13 flowering rush habitat versus native vegetation and open water habitats.

Parameter	(I) Habitat	(J) Habitat	Mean Difference (I-J)	LSD p.
Count Sum	Flowering Rush	40 Native	59 (*)	.016
	99	89 Open Water	10	.670
Richness	Flowering Rush	5.1 Native	3.4(*)	.000
	8.5	6.8 Open Water	1.6 (*)	.000
Evenness	Flowering Rush	.795 Native	050	.318
	.745	.659 Open Water	.0862	.082
SW Diversity	Flowering Rush	1.263 Native	.326 (*)	.001
	1.549	1.259 Open Water	.330 (*)	.000
Simpsons Div.	Flowering Rush	.653 Native	.073	.056
	.726	.611 Open Water	.115(*)	.003

* The mean difference is significant at <0.05 level.

Parameter	(I) Native	(J) Open Water	Mean Difference (I-J)	LSD p.
Count Sum	40	89	-49.6 (*)	.049
Richness	5.1	6.8	-1.7(*)	<.001
Evenness	.795	.659	.136(*)	.012
SW Diversity	1.263	1.259	.004	.967
Simpsons Div.	.653	.61	.042	.274

Table 9. Native vegetation and open water habitats pairwise (LSD) comparisons of means for organism counts and diversity parameters for 2013 Fennon Slough light trap samples.

* The mean difference is significant at <0.05 level.

The Fennon Slough fish community was predominately introduced fish; we did not capture any natives in the 2013 light trap samples on the upper river (Table 10). These introduced fish made primary use of the dense flowering rush habitat. Northern pike juveniles were only captured in the flowering rush infestations. Flathead Lake East Bay (Ducharme) light trap samples taken in flowering rush habitat were dominated by juvenile yellow perch and sheltered few native northern pikeminnows (Table 11).

	# of light	Largemouth	Yellow	Pumpkin-	Northern Piko
1000/	traps	Dass	Terch	seeu	1 IKC
100%					
Flowering Rush	44	77.3	31.8	6.8	11.4
100%					
Native	36	55.6	2.8	0	0
Open					
Water	36	25.0	0	0	0

Table 11. Percent of positive light trap detects for fish in East Bay (2013).

	# of light traps	Northern Pikeminnow	Yellow Perch
100%			
Flowering Rush	31	3	29

Ordination (by non-metric multidimensional scaling) of the 2012 dip net samples indicates that the macroinvertebrate communities across habitats differed strongly in species composition and relative abundance (Figure 1). The shifts in species composition follow a consistent increasing vegetative gradient from open water to partial native vegetation cover to 100% cover by native vegetation, to 100% canopy cover of flowering rush (BUTUMB).

Figure 1. Aquatic plant community (all fish & macroinvertebrates) ordination for Faust Slough 2012 dip net samples (BUTUMB = flowering rush) (1D rank NMS stress 14.1).

The magnitude of the difference in relative species composition is statistical significant (Table 12). The magnitude of the differences in ecological effect size correspond to shifts indicated by the ordination graph (Figure 1). We believe that these differences in ecological effect size are ecologically important as well as statistically significant. Effect sizes of this magnitude (.1 to .3) are generated by spraying herbicides on diverse plant communities.

Table 12. Ecolo	gical Effect Siz	ze (A) for Faust	Slough 2012 di	p net samples (Multi-Response	Permutation
Procedure *p≤0).05 ***p≤0.001).				

	Flowering Rush	100% NATIVE	25-100% NATIVE
100% NATIVE	.103*		
25-100% NATIVE	.363*	.280***	
OPEN WATER	.370***	.280***	.342***

The 2013 light trap data for Fennon Slough shows similar species composition segregation by habitat type (Figure 2). The community utilizing the flowering rush habitat is clearly different than that occupying the native vegetation. Ecological effects size differences are also statistically significant and ecologically important (Table 13).

Figure 2. Aquatic plant community (all fish & macroinvertebrates) ordination for Fennon Slough 2013 light trap samples (BUTUMB = flowering rush) (2D NMS stress 16.3).

Table 13. . Ecological Effect Size (A) for Fennon Slough 2013 light trap samples (Multi-Response Permutation Procedure **p≤0.01 ***p≤0.001).

	Flowering Rush	Native Veg
Native Veg	0.168***	
Open Water	0.092**	0.190***

A summary of the 2012 Faust Slough dip net macroinvertebrate samples by functional feeding groups indicated that the slough is dominated by gatherers (Table 14). The sample size across habitat types is too small (n=2 to 4) to warrant inference testing. However as would be expected scrapers are more prevalent in the dense vegetation habitats filters in the open water.

Functional	Flowering	Native	Native	Open
Feeding Group	<u>Rush 100%</u>	<u>100%</u>	<u>50%</u>	<u>Water</u>
Filterers	3.8	1.2	2.5	11.3
Gatherers	58.6	65.6	65.1	65.8
Omnivore†	0.0	0.0	0.3	0.0
Piercer-Herbivore	0.0	0.2	0.0	0.3
Predators	11.6	10.7	10.0	12.3
Predators/Gatherers $^{\Pi}$	2.6	0.3	8.5	2.1
Scrapers	22.2	21.2	12.4	6.4
Shredders	<u>1.2</u>	<u>0.8</u>	<u>1.2</u>	<u>1.7</u>
	100.0	100.0	100.0	100.0

 Table 14. Proportional functional feeding groups summary (percent of total counts) for 2012 Faust Slough dip net samples.

 Functional
 Flowering

 Native
 Open

†crayfish, Π water boatman

A similar summary of the 2012 Faust Slough dip net macroinvertebrate samples by functional habit groups is presented in Table 15. As above the sample size across habitat types is too small (n=2 to 4) to warrant inference testing. However there are some trends indicated that would be expected with the difference in vegetative structure. Burrower numbers are highest for the unvegetated substrate. Climbers are more numerous in the vegetated habitats, and nominally highest in the flowering rush with its dense array of vertical linear leaves providing and extensive and easily grazed periphyton community.

Table 15. Proportional functional habit groups summary	(percent of total counts) for	2012 Faust Slough
dip net samples.		

Functional <u>Habit Group</u>	Flowering <u>Rush 100%</u>	Native <u>100%</u>	Native <u>50%</u>	Open <u>Water</u>
Burrowers	2.0	1.7	2.4	6.0
Climbers	26.6	21.2	15.0	5.9
Climbers (L), Divers (A)	2.1	3.7	2.8	4.3
Clingers	6.6	8.0	6.6	18.1
Clingers/Varied	16.6	30.9	46.7	45.1
Sprawlers	4.3	1.8	2.2	4.8
Swimmers	3.6	2.1	9.2	2.2
Swimmers/Varied	38.2	30.5	14.8	13.6
Crayfish	0.0	0.0	0.3	0.0
Whirligig Beetles	<u>0.1</u>	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>
	100.0	100.0	100.0	100.0

L=larval life stage, A=adult life stage

Over the two years of sampling 89 taxa were captured. The species are listed in Table 16.

Order/Class	<u>Taxon</u>	Functional Group	<u>Habit</u>
Acari (water mites)	Atractides		
Acari (water mites)	Hydrachna	Predators	Swimmer
Acari (water mites)	Limnesia	Predators	Swimmer
Acari (water mites) ?	Elyais	Predators	Swimmer
Clitellata (Leeches/Worms)	Erpobdella punctata	Gatherers	Swimmer
Clitellata (Leeches/Worms)	Tubificidae	Gatherers	Sprawler
Coleoptera (Beetles)	Coptotomus longulus	Gatherers	Clinger,SP,CM(la), DI,SW(ad)
Coleoptera (Beetles)	Desmppachria convexa	Predators	Climbers (L), Divers (A)
Coleoptera (Beetles)	Dineutus	Predators	CM (la), DI, SW (ad)
Coleoptera (Beetles)	Enochrus	Gatherers	Clinger,SP,CM(la), DI,SW(ad)
Coleoptera (Beetles)	Gyrinus affinis	Predators	Swimmer
Coleoptera (Beetles)	Haliplus	Gatherers	Clinger/50%, Climber/50%
Coleoptera (Beetles)	Hydrobius		
Coleoptera (Beetles)	Hygrotus	Predators	Climbers (L), Divers (A)
Coleoptera (Beetles)	llybius	Predators	Climbers (L), Divers (A)
Coleoptera (Beetles)	Laccophilus	Predators	Climbers (L), Divers (A)
Coleoptera (Beetles)	Nebrioporus marginatus	Predators	Climbers (L), Divers (A)
Coleoptera (Beetles)	Peltodytes	Gatherers	Clinger/50%, Climber/50%
Coleoptera (Beetles)	Rhantus	Predators	Climbers (L), Divers (A)
Coleoptera (Beetles)	Tropisternus lateralis	Gatherers	Clinger,SP,CM(la), DI,SW(ad)
Coleoptera (Beetles)	Zaitzevia	Scrapers	Clinger
Crustaceans			
(Amphipoda/Crayfish)	Caecidotea	Gatherers	Sprawler/75%, SW/25%
Crustaceans	Gammarus lacustris		
(Amphipoda/Crayfish)		Gatherers	SW/50%, SP/50%
(Amphipoda/Crayfish)	Hvalella azteca	Gatherers	SW//50% SP/50%
Crustaceans		Gatherers	500/50/8, 51/50/8
(Amphipoda/Cravfish)	Orconectes virilis	Omnivore	Invader
Crustaceans			
(Amphipoda/Crayfish)	Ostracoda	Gatherers	SW/50%, SP/25%, BU/25%
Diptera (True Flies)	Ablabesmyia	Predators	Sprawler
Diptera (True Flies)	Aedes	Filterers	Sprawler
Diptera (True Flies)	Bezzia	Predators	Climbers
Diptera (True Flies)	Chrysops	Predators	Sprawler
Diptera (True Flies)	Corynoneura	Gatherers	Sprawler
Diptera (True Flies)	Cricotopus	Shredders	Clinger
Diptera (True Flies)	Doliochopodidae	Predators	Burrower
Diptera (True Flies)	Ephydra		

Table 16. Taxa (n=89) captured by dip nets and light traps in 2012 and 2013.

Diptera (True Flies)	Euparyphus		
Diptera (True Flies)	Glyptotendipes	Filterers	Clinger
Diptera (True Flies)	Polypedilum	Shredders	Clinger
Diptera (True Flies)	Procladius	Predators	Sprawler
Diptera (True Flies)	Psectrocladius	Gatherers	Burrower
Diptera (True Flies)	Sciomyzidae	Scrapers	Clinger
Diptera (True Flies)	Stempellina	Gatherers	Burrower
Diptera (True Flies)	Tanytarsus	Filterers	Clinger
Ephemeroptera (Mayflies)	Caenis youngi	Gatherers	Sprawler/75%, Climber/25%
Ephemeroptera (Mayflies)	Callibaetis	Gatherers	Clinger/90%, Swimmer/10%
Ephemeroptera (Mayflies)	Paraleptophlebia bicornuta		
Ephemeroptera (Mayflies)	Tricorythodes minutus	Gatherers	Clinger
Fish	Brook Stickleback (yoy)		
Fish	Largemouth Bass (yoy)		
Fish	Northern Pikeminnow (yoy)		
Fish	Northern Pike (ypy)		
Fish	Pumpkinseed		
Fish	Yellow Perch (yoy)		
Hemiptera (True Bugs)	Belastoma fluminea	Predators	Clinger
		Predators/	
Hemiptera (True Bugs)	Corixidae	Gatherers	Swimmer
Hemiptera (True Bugs)	Gerridae		
Hemiptera (True Bugs)	Hesperocorixa	Gatherers	Swimmer
Hemiptera (True Bugs)	Neoplea	Piercer-Herbivore	Clinger
Hemiptera (True Bugs)	Notonecta	Predators	Swimmer
Mollusks (Snails/Clams)	Fossaria humilis	Scrapers	Climbers
Mollusks (Snails/Clams)	Gyraulus circumstriatus	Scrapers	Climbers
Mollusks (Snails/Clams)	Gyraulus parvus	Scrapers	Climbers
Mollusks (Snails/Clams)	Helisoma anceps	Scrapers	Climbers
Mollusks (Snails/Clams)	Physella acuta	Scrapers	Climbers
Mollusks (Snails/Clams)	Physella gyrina	Scrapers	Climbers
Mollusks (Snails/Clams)	Pisidium	Filterers	Burrower
Mollusks (Snails/Clams)	Planorbella trivolvis	Scrapers	Climbers
Mollusks (Snails/Clams)	Promenetus umbilicatellus		
Mollusks (Snails/Clams)	Sphaerium simile	Filterers	Burrower
Mollusks (Snails/Clams)	Stagnicola caperata	Scrapers	Climbers
Mollusks (Snails/Clams)	Valvata humeralis	Scrapers	Climbers
Mollusks (Snails/Clams)	Valvata sincera	Scrapers	Climbers
Mollusks (Snails/Clams)	Valvata tricarinata	Scrapers	Climbers
Odonata			
(Dragonflies/Damselflies)	Aeshna	Predators	Climbers
Odonata			
(Dragonflies/Damselflies)	Aeshna palmata	Predators	Sprawler

Odonata			
(Dragonflies/Damselflies)	Enallagma	Predators	Clinger
Odonata			
(Dragonflies/Damselflies)	Enallagma annexum	Predators	Clinger
Odonata			
(Dragonflies/Damselflies)	Ischnura cervula	Predators	Clinger
Odonata			
(Dragonflies/Damselflies)	Ischnura perparva	Predators	Clinger
Odonata			
(Dragonflies/Damselflies)	Lestes disjunctus	Predators	Climbers
Odonata			
(Dragonflies/Damselflies)	Sympetrum	Predators	Climbers
Odonata			
(Dragonflies/Damselflies)	Sympetrum internum	Predators	Climbers
Odonata			
(Dragonflies/Damselflies)	Sympetrum obtrusum	Predators	Climbers
Trichoptera	Hydroptila	Piercer-Herbivore	Clinger
Trichoptera	Lepidostoma	Shredders	Climbers
Trichoptera	Limnephilus	Shredders	Sprawler
Trichoptera	Nectopsyche diarina	Gatherers	Clinger/Sprawler/Climber
Trichoptera	Polycentropus	Predators	Clinger/50%, AT/50%
Trichoptera	Ptilostomis	Shredders	Sprawler
Turbellaria	Turbellaria	Predators	Sprawler